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Abstract

In decentralized networks, managing trust remains a pivotal challenge, particularly in envi-
ronments where interactions are not governed by a central authority. This paper introduces an
algorithm designed to compute and propagate trust in a decentralized manner by leveraging the
concept of relative trust between nodes. Unlike traditional trust models that rely on absolute
scores, our algorithm calculates trust based on the relative reliability of nodes as perceived by a
given node in the network. Our introduction of this algorithm highlights the potential of decen-
tralized relative trust mechanisms to enhance security and reliability in peer-to-peer and other
distributed systems.

1 Scope and Design Criteria

Before introducing an algorithm to compute trust, we must define constraints for our algorithm to
satisfy. Firstly, this algorithm will compute a relative trust score for any peer from the perspective of
any other peer. Our algorithm will use peer-to-peer attestations of trust as a primitive to derive these
scores. Since this process has no centralized arbiter, it must be the case that peers in the network
have no incentive to attest positively to peers that they do not see as trustworthy. It must similarly be
the case that peers have no disincentive that might discourage them from attesting to a trustworthy
friend in the network. Crucially, our algorithm must not allow any peer to increase it’s own reputation.
Additionally, our algorithm must compute scores in a way that is reflective of trustworthiness. The
criteria below summarize these considerations.

1. Non-Destructiveness. Every attestation of trust from one peer to another should result in the
recipient’s trust score increasing or remaining the same from the perspective of every other peer
in the network.

2. Sybil-resistance and robustness towards malicious collectives. No peer should be able to create
another peer whose reputation is greater than that of the peer itself, and no collective should
be able to create a peer whose reputation is greater than that of the collective’s most reputable
member.

3. Balanced incentive structure. No peer should be able to raise or lower its own trust score from
the perspective of any other peer. Furthermore, no peer should be able to alter its own standing
relative to another peer from the perspective of a third observer.

2 Related Work

We separate these algorithms into two categories. Those that treat reputation as a subjective value
and those that treat it as a global value. EigenTrust is a well-known algorithm of the first type, while
Appleseed and Tidal trust are well-known algorithms of the second type.
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2.1 EigenTrust

The first well-known algorithm belonging to this family is EigenTrust [3]. On its own, EigenTrust does
not satisfy design constraint 1. Analysis of the EigenTrust algorithm yields many counterexamples
where peers in a network are incentivized to exploit cycles in the trust graph to gain reputation. Further
research was conducted by Abrams, McGrew, and Plotkin [1] to create a version of EigenTrust that
satisfies constraint 1 by breaking these cycles probabilistically. However, the main difference between
our proposed algorithm and the EigenTrust family lies in the subjective nature of the reputation scores
assigned.

2.2 Appleseed

For the same reasons as EigenTrust, Appleseed [4] does not satisfy design constraint 3. However,
it does provide subjective score using a similar initialization procedure to the one described in this
algorithm. Much like our proposed algorithm, Appleseed can also be extended to include distrust.

2.3 TidalTrust

While TidalTrust [2] satisfies design constraint 3, it is difficult to evaluate constraint 1. TidalTrust
uses shortest paths along directed edges to compute trust. Although this generally produces good
results, it is possible that some node A placing a small amount of trust in a node B (as opposed to
being unfamiliar with node B) will cause a decrease in the trust score of node B from a third observer.
Additionally, this approach leaves out important context provided by longer paths.

3 Formalization of Criteria

To formalize our design criteria mathematically, we introduce the following definitions.

• Let N(G) be the set of all nodes in G.

• Let E(G) be the set of all edges in G.

• Let F (G,A,B) be the trust score of node B from the perspective of node A where G is a
weighted, directed graph such that E(G) is a set of trust attestations and A,B ∈ N(G). Each
edge E0 ∈ E(G) has a source S(E0), target T (E0), and weight W (G,S(E0), T (E0)).

1. Non-Destructiveness. LetG′ be a graph such thatN(G′) = N(G) andW (G,X, Y ) = W (G′, X, Y )
for all X,Y ∈ N(G) such that X ̸= M or Y ̸= B. If W (G′,M,B) > W (G,M,B), then for all
A ∈ N(G), it must be true that F (G′, A,B) ≥ F (G,A,B). If W (G′,M,B) < W (G,M,B), then
for all A ∈ N(G), it must be true that F (G′, A,B) ≤ F (G,A,B).

2. Sybil-resistance and robustness towards malicious collectives. Let N1, N2, and N3 be mutually
exclusive sets of nodes in G such that N1 ∪N2 ∪N3 = N(G). Let N1 represent the world outside
of the collective. We let N2 represent the creators of collective N3, whose members are not
trusted by members of N1. Formally, W (G,X1, X3) = 0 for all X1 ∈ N1 and X3 ∈ N3. For all
A ∈ N1 and all X3 ∈ N3, it must be the case that F (G,A,X3) ≤ F (G,A,X2) for some X2. That
is, any outside node A must not assign a higher reputation to a collective member X3 than it
has assigned some collective creator X2.

3. Balanced incentive structure. Let G′ be a graph such that N(G′) = N(G) and W (G,X, Y ) =
W (G′, X, Y ) for all X,Y ∈ N(G) such that X ̸= M or Y ̸= B. For all A ∈ N(G), it must
be true that F (G′, A,M) = F (G,A,M). We also require that F (G′, A,X) ≥ F (G′, A,M) for
all X such that F (G,A,X) ≥ F (G,A,M) and F (G′, A,X) ≤ F (G′, A,M) for all X such that
F (G,A,X) ≤ F (G,A,M).
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4 Definition

4.1 Hyperparameters

The user-defined trust policy determines whether the set of weights originating from a given user is
valid.
An example of such a trust policy is shown below. This policy allows each user to assign a weight of
absolute value up to 0.8 to a maximum of 5 users.

Algorithm 1: Trust Policy

Data: G,S
CTR = 0 ; /* Initialize counter*/

for T ∈ N(G) do
CTR← CTR+ 1 ; /* Increment counter*/

if W (G,S, T ) > 0.8 OR CTR > 5 then
return False ; /* Policy failed*/

end

end
return True ; /* Policy passed*/

In addition to satisfying the trust policy, a graph G is valid only if

0 ≤W (G,S, T ) ≤ 1

for all S, T ∈ N(G).

4.2 Notation

This algorithm takes place in a series of iterations. We maintain two mappings of nodes to numbers,
Sc and In. We denote the values in these mappings corresponding to node A0 as Sc[A0] and In[A0]
respectively.

Let K(N, In) be a function returning set of all nodes n ∈ N such that In[n] = 0. Let H(N, In, Sc)
denote a function whose output is the set of all nodes n ∈ K(N, In) such that Sc[n] ≥ Sc[m] for all
nodes m ∈ K(N, In). H returns the empty set if no such list exists.

Let W (G,S, T ) be the weight of the edge from S to T in graph G. Returns 0 if no such edge exists.
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4.3 Pseudocode

We will define F (G,A,B) using the following pseudocode.

Algorithm 2: Transitive Trust Algorithm

Data: G,A,B
Sc[A]← 1 ; /* Set A’s reputation to 1.*/

for X in N(G) do
if X ̸= A then

Sc[X]← 0 ; /* Set all other nodes’ reputations to 0.*/

end
In[X]← 0 ; /* None of the nodes have been inspected.*/

end
while ∃X : In[X] = 0 do

L← H(N(G), In, Sc) ; /* Let L be the nodes of max accumulated score*/

for S in L do
In[S]← 1 ; /* Mark S as inspected.*/

Sc[S]←MAX(Sc[S], 0) ; /* Reputation is non-negative*/

for T : S ̸= T do
if In[T ] = 0 then

Sc[T ]← Sc[T ] + (Sc[S]− Sc[T ]) ∗W (G,S, T ) ; /* Pass score down*/

end

end

end

end
return Sc[B] ; /* Return the score at B*/

5 Analysis of Criteria

We will now examine each of the criteria from section 2 and demonstrate that the proposed algorithm
satisfies its mathematical definition.
For some X,A,B ∈ N(G), we define I[X][G][A][B] be the number i such that X ∈ l on iteration i of
the while loop in our algorithm. We denote I[X][G][A][B] as IX and I[X][G′][A][B] as I ′X .

5.1 Non-Destructiveness

Let Sc[G][i][X] be the value of Sc[X] after i iterations of the while loop have been executed on graph G.

Let In[G][i][X] be the value of In[X] after i iterations of the while loop have been executed on graph G.

Let G′ be a graph such that N(G′) = N(G) and W (G,X, Y ) = W (G′, X, Y ) for all X,Y ∈ N(G) such
that X ̸= M or Y ̸= B. Suppose that W (G′,M,B) > W (G,M,B) and F (G,A,B) and F (G′, A,B).

Lemma 1. For all i < IB , I
′
B and X ̸= B, Sc[G][i][X] = Sc[G′][i][X] for all X, Sc[G][i][B] ≤

Sc[G′][i][B] and In[G][i][X] = In[G′][i][X] for all X ̸= B.

Proof. We induct on i to prove this.

If i = 0, Sc[G][A][i] = Sc[G′][A][i] = 1 and Sc[G][i][X] = Sc[G′][i][X] = 0 for all X ̸= A. In[G][i][X] =
In[G′][i][X] = 0 for all X.

Now, we make the following assumptions for some i < IB , I
′
B :

• Sc[G][i− 1][X] = Sc[G′][i− 1][X] for all X ̸= B
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• Sc[G][i− 1][B] ≤ Sc[G′][i− 1][B]

• In[G][i− 1][X] = In[G′][i− 1][X] for all X

Let L be the list of nodes returned by H(G, In, Sc) at the start of iteration i of the while loop com-
puting F (G,A,B). Let L′ be the list of nodes returned by L(G′, In, Sc) at the start of iteration i of
the while loop computing F (G′, A,B).

Let GB be the subgraph of G such that N(GB) = N(G) \ {B} and E(GB) = {EB ∈ E(G)|S(EB) ̸=
B, T (EB) ̸= B}. Notice that since i < IB , I

′
B , so B is not in l or l′. Therefore L = H(G, In, Sc) =

H(GB , In, Sc) and L′ = H(G′, In, Sc) = H(G′
B , In, Sc). Since Sc[G][i − 1][X] = Sc[G′][i − 1][X],

In[G][i− 1][X] = In[G′][i− 1][X], and G′
B = GB for all X ̸= B, H(GB , In, Sc) = H(G′

B , In, Sc). So
L = L′, and thus In[G][i][X] = In[G′][i][X] for all X.

First, note that Sc[G][i][X] = Sc[G][i−1][X] for all X such that In[G][i−1][X] = 1 and Sc[G′][i][X] =
Sc[G′][i− 1][X] for all X such that In[G′][i][X] = 1.
Now we compute Sc[G][i][X] for all X such that In[G][i][X] = 0 according to our algorithm.

For all S ∈ L, Sc[G][i][X] = MAX(Sc[G][i − 1][X], 0) and Sc[G′][i][X] = MAX(Sc[G][i − 1][X], 0) .
Since Sc[G][i− 1][X] = Sc[G′][i− 1][X], it follows that Sc[G][i][X] = Sc[G′][i][X].
For all X such that In[G][i][X] = 0 and X /∈ L, we compute Sc[G][i][X] and Sc[G′][i][X] as shown
below. Let ScL be the score of any element of L.

Sc[G][i][X] = Sc[G][i− 1][X]− (ScL − Sc[G][i− 1][X])
∏
S∈L

(1−W (G,S,X)) (1)

Sc[G′][i][X] = Sc[G′][i− 1][X]− (ScL′ − Sc[G′][i− 1][X])
∏
S∈L

(1−W (G′, S,X)) (2)

Note that L = L′, so ScL = ScL′ . If X ̸= B, then W (G,S,X) = W (G′, S,X), so∏
S∈L

(1−W (G,S,X)) =
∏
S∈L′

(1−W (G′, S,X)) (3)

Hence Sc[G][i][X] = Sc[G′][i][X] for all X ̸= B.
If X = B, then W (G,S,X) ≤W (G′, S,X), so∏

S∈L

(1−W (G,S,X)) ≥
∏
S∈L′

(1−W (G′, S,X)) (4)

Since Sc[G′][i−1][B] ≥ Sc[G][i−1][B], substitutingX = B into equations (3) and (4) gives Sc[G′][i][B] ≥
Sc[G][i][B].

Now we have proven that for all i < IB , I
′
B , Sc[G][i][X] = Sc[G′][i][X] for all X ̸= B and Sc[G][i][B] ≤

Sc[G′][i][B].

Next, we show that I ′B ≤ IB . Suppose for the sake of contradiction that I ′B > IB . Then on iteration
IB in the computation of F (G,A,B), B ∈ L and on iteration IB in the computation of F (G′, A,B),
B /∈ L′ and In[G′][IB ][B] = 0. This means that Sc[G][IB − 1][B] ≥ Sc[G][IB − 1][X] for all X /∈ B.
However, Sc[G][IB − 1][X] = Sc[G′][IB − 1][X] for all X ̸= B. So Sc[G][IB − 1][B] ≥ Sc[G′][IB − 1][X]
for all X ̸= B. Since Sc[G′][i− 1][B] ≥ Sc[G][IB − 1][B], Sc[G′][IB − 1][B] ≥ Sc[G′][IB − 1][X] for all
X ̸= B. Hence B ∈ L′, which is a contradiction.

Suppose IB = I ′B . Then

F (G′, A,B) = MAX(Sc[G′][I ′B − 1][B], 0)

≥MAX(Sc[G][IB − 1][B], 0)

= F (G,A,B)

5



Suppose I ′B < IB . We know that F (G′, A,B) = Sc[G′][I ′B−1][B] from the definition of our algorithm.
Note that Sc[G][I ′B − 1][X0] > Sc[G][I ′B − 1][B] for some X0 ̸= B. Because Sc[G′][I ′B − 1][B] ≥
Sc[G′][I ′B−1][X] and Sc[G′][I ′B−1][X] = Sc[G][I ′B−1][X] for allX, we can conclude Sc[G′][I ′B−1][B] ≥
Sc[G][I ′B − 1][X] for all X.

Since F (G,A,B) ≤ Sc[G][I ′B − 1][X0], we make use of the inequality

Sc[G][I ′B − 1][X0] ≤ Sc[G′][I ′B − 1][B]

Because F (G,A,B) ≤ Sc[G][I ′B − 1][X0] ≤ Sc[G′][I ′B − 1][B] = F (G′, A,B)
By symmetry, we have F (G′, A,B) ≤ F (G,A,B) when W (G′,M,B) < W (G,M,B).

5.2 Sybil-resistance and robustness towards malicious collectives

Let N1,N2,N3 be defined as in section 2.2. Let A ∈ N1, X3 ∈ N3 and let C be the first value of S in
the computation of F (G,A,B) such that S /∈ N1.

Note that for all X such that IX ≥ IC , F (G,A,X) ≤ F (G,A,C). If C ∈ N2, then F (G,A,X3) ≤
F (G,A,C) for all X3 ∈ N3 because IX3

≥ IC by definition of C.

If C ∈ N3, it must be the case that F (G,A,C) = 0. This is because F (G,A,C) = Sc[G][C][IC − 1].
Notice that Sc[G][IC − 1][C] must equal 0. This is because all previous values of S are in N1, so only
targets of edges E0 such that S(E0) ∈ N1 are mutated after initialization. Since we are given that no
such edge has a target in N3, we know that F (G,A,C) = Sc[G][IC − 1][C] = 0. By the same logic
from the last paragraph, this tells us that F (G,A,X) = 0 for all X ∈ N2 ∪N3. Thus, our condition is
satisfied in both possible cases.

5.3 Balanced Incentive Structure

Let G′ be a graph such that N(G′) = N(G) and W (G,X, Y ) = W (G′, X, Y ) for all X,Y ∈ N(G) such
that X ̸= M or Y ̸= B. Consider F (G,A,B) and F (G′, A,B). By lemma 1, Sc[G][i][X] = Sc[G′][i][X]
for all i < IB and X ̸= B.

Lemma 2. For all i ≤ IM and all X ∈ N(G), In[G][IM ][X] = In[G′][IM ][X] and Sc[G][IM −1][X] =
Sc[G′][IM − 1][X].

Proof. For some i < IM , I ′M , assume Sc[G][i − 1][X] = Sc[G′][i − 1][X] and In[G][i − 1][X] =
In[G′][i− 1][X] for all X ∈ N(G).

Now, we compute In[G][i][X] in all possible cases.
Case 1:
If In[G][i− 1][X] = In[G′][i− 1][X] = 1, then In[G][i][X] = In[G′][i][X] = 1.

Case 2: Since N(G′) = N(G), In[G′][i − 1] = In[G][i − 1] and Sc[G′][i − 1] = Sc[G][i − 1], it follows
that

L = H(N(G), In[G][i− 1], Sc[G][i− 1]) = H(N(G′), In[G′][i− 1], Sc[G′][i− 1]) = L′

on iteration i. Since L = L′ on iteration i, it follows that ScL = ScL′ . So for all X such that X ∈ L
on iteration i, In[G][i][X] = In[G′][i][X] = 1.

Case 3: If In[G][i − 1][X] = In[G′][i − 1][X] = 0, and X /∈ L on iteration i, then X /∈ L′. So,
In[G][i][X] = In[G′][i][X] = 0.

Therefore, In[G][i][X] = In[G′][i][X].
Now, we compute Sc[G][i][X] in all possible cases.
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Case 1: If In[G][i][X] = In[G′][i][X] = 1, then Sc[G][i][X] = Sc[G][i − 1][X] and Sc[G′][i][X] =
Sc[G′][i− 1][X]. Therefore, since Sc[G′][i− 1][X] = Sc[G′][i− 1][X], Sc[G′][i][X] = Sc[G′][i][X].

Case 2: If In[G][i][X] = In[G′][i][X] = 0, then Sc[G][i][X] = Sc[G][i − 1][X] and Sc[G′][i][X] =
Sc[G′][i− 1][X]. Therefore, since Sc[G′][i− 1][X] = Sc[G][i− 1][X], Sc[G′][i][X] = Sc[G][i][X].
We compute Sc[G][i][X] using equations (3) and (4).
Since i < I ′M , IM , there is no S ∈ L such that S = M . Therefore, W (G,S,X) = W (G′, S,X) for all
S ∈ l. Therefore, since Sc[G′][i− 1][X] = Sc[G][i− 1][X], Sc[G′][i][X] = Sc[G][i][X].
By induction, In[G′][IM − 1][X] = In[G][IM − 1][X] and Sc[G′][IM − 1][X] = Sc[G][IM − 1][X] for all
X ∈ N(G). So, l = l′ on iteration IM , and thus In[G′][IM ][X] = In[G][IM ][X].

Lemma 3. For all X ∈ N(G), if IX > IM then I ′X > IM .

Proof. Suppose that IX > IM and I ′X ≤ IM then In[G][IM ][X] = 0 and In[G′][IM ][X] = 1. This is a
contradiction to lemma 2.

If IM < IB , then IM < I ′B by lemma 3. So Sc[G][IM ][M ] = Sc[G′][IM ][M ] by lemma 1. Since
F (G,A,M) = Sc[G][IM ][M ] and F (G′, A,M) = Sc[G′][IM ][M ], F (G,A,M) = F (G′, A,M).

If IM > IB , there exists no i such that In[G][i][B] = 0 and In[G][i][M ] = 1, hence the value
W (G,B,M) is not computed in the algorithm, and the computation will yield the same result for
any value of W (G,B,M). Hence, F (G,A,M) = F (G′, A,M).

If IM = IB , there exists some i such that M,B ∈ L(G, In, Sc). Since there exists exactly one i such
that each node in N(G) is in l, there exists no i such that M ∈ L(G, In, Sc) and B /∈ l.Hence the
value W (G,B,M) is not computed in the algorithm, so the computation will yield the same result for
any value of W (G,B,M). So, F (G,A,M) = F (G′, A,M). Thus we have proven the first part of our
criteria.

Consider node X such that F (G,A,X) ≥ F (G,A,M), we know that IX ≤ IM . By lemma 2,
Sc[G][X][IX − 1] = Sc[G′][X][IX − 1]. By definition, F (G,A,X) = MAX(Sc[G][X][IX − 1], 0) and
F (G′, A,X) = MAX(Sc[G′][X][IX − 1], 0). So, F (G′, A,X) = F (G,A,X). Note that our previous
proof yields F (G′, A,M) = F (G,A,M). So, it follows that F (G′, A,X) ≥ F (G′, A,M).

Consider node X such that F (G,A,X) ≤ F (G,A,M). Note that IX ≥ IM , which implies that
I ′X ≥ IM by lemma 3. So F (G′, A,X) ≤ F (G′, A,M).

6 Enhancements and Modifications

A number of modifications can be made to the proposed algorithm to improve its robustness. One
such modification is detailed below. For each of these modifications, it can be shown that the modified
version satisfies all properties listed in section 2.

6.1 Incorporation of distrust

This version of the algorithm allows trusted nodes to propagate distrust using negative values for
weights. Our new necessary condition for weights in a graph G is

|W (G,S, T )| < 1

for all S, T ∈ N(G).
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Algorithm 3: Transitive Trust Algorithm with Distrust

Data: G,A,B
PSc[A]← 1 ; /* Set A’s positive reputation to 1.*/

for X in N(G) do
if X ̸= A then

PSc[X]← 0 ; /* Set all other nodes’ positive reputations to 0.*/

end
NSc[X]← 0 ; /* Set all nodes’ negative reputations to 0.*/

In[X]← 0 ; /* None of the nodes have been inspected.*/

end
while ∃X : In[X] = 0 do

L← H(N(G), In, Sc) ; /* Let L be the nodes of max accumulated score*/

for S in L do
In[S]← 1 ; /* Mark S as inspected.*/

Sc[S]←MAX(PSc[S]−NSc[S], 0) ; /* Reputation is non-negative*/

for T : S ̸= T do
if In[T ] = 0 then

if W (G,S, T ) > 0 AND Sc[S] > PSc[T ] then
PSc[T ]← PSc[T ] + (Sc[S]− PSc[T ]) ∗W (G,S, T );

end
if W (G,S, T ) < 0 AND Sc[S] > NSc[T ] then

NSc[T ]← NSc[T ]− (Sc[S]−NSc[T ]) ∗W (G,S, T );
end

end

end

end

end
return Sc[B] ; /* Return the score at B*/
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6.2 Disqualification of Nodes

On any iteration of the algorithm, if a node’s score is less than a certain disqualification ceiling D,
then it is disqualified from having a positive reputation (and by extension passing reputation to other
nodes). This modification would leverage the loyalty of source node A to nodes that it sees with a
higher reputation.

Algorithm 4: Transitive Trust Algorithm with Node Disqualification

Data: G,A,B,D
PSc[A]← 1 ; /* Set A’s positive reputation to 1.*/

for X in N(G) do
if X ̸= A then

PSc[X]← 0 ; /* Set all other nodes’ positive reputations to 0.*/

end
NSc[X]← 0 ; /* Set all nodes’ negative reputations to 0.*/

In[X]← 0 ; /* None of the nodes have been inspected.*/

end
while ∃X : In[X] = 0 do

L← H(N(G), In, Sc) ; /* Let L be the nodes of max accumulated score*/

for S in L do
In[S]← 1 ; /* Mark S as inspected.*/

Sc[S]←MAX(PSc[S]−NSc[S], 0) ; /* Reputation is non-negative*/

end
for C in N(G) do

Dis[C]← 0 ; /* Assume C is not disqualified.*/

if PSc[C]−NSc[C] < D then
Dis[C]← 1 ; /* Mark C as disqualified.*/

end

end
for S in L do

for T : S ̸= T do
if In[T ] = 0 and Dis[T ] = 0 then

if W (G,S, T ) > 0 AND Sc[S] > PSc[T ] then
PSc[T ]← PSc[T ] + (Sc[S]− PSc[T ]) ∗W (G,S, T );

end
if W (G,S, T ) < 0 AND Sc[S] > NSc[T ] then

NSc[T ]← NSc[T ]− (Sc[S]−NSc[T ]) ∗W (G,S, T );
end

end

end

end

end
return Sc[B] ; /* Return the score at B*/
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6.3 Telescoping Accumulation

An alternative model for the accumulation of trust is shown in the following algorithm. This method
of accumulating trust amplifies the change in reputation caused by each one of n nodes of similar
reputation attesting positively to a single node as n grows large. Note that this algorithm removes all
restrictions on the value of W (G,S, T ).

Algorithm 5: Telescoping Transitive Trust Algorithm

Data: G,A,B
Sc[A]← 1 ; /* Set A’s reputation to 1.*/

for X in N(G) do
if X ̸= A then

Sc[X]← 0 ; /* Set all other nodes’ reputations to 0.*/

end
In[X]← 0 ; /* None of the nodes have been inspected.*/

end
while ∃X : In[X] = 0 do

L← H(N(G), In, Sc) ; /* Let L be the nodes of max accumulated score*/

for S in L do
In[S]← 1 ; /* Mark S as inspected.*/

Sc[S]←MAX(Sc[S], 0) ; /* Reputation is non-negative*/

for T : S ̸= T do
if In[T ] = 0 then

Sc[T ]← Sc[S] ∗ Sc[T ]+W (G,S,T )∗(Sc[S]−Sc[T ])
Sc[S]+W (G,S,T )∗(Sc[S]−Sc[T ]) ; /* Pass score down*/

end

end

end

end
return Sc[B] ; /* Return the score at B*/

The same accumulation method can be applied to the variants discussed in 6.1 and 6.2 without com-
promising any of the properties shown in section 5. This can be done by replacing

PSc[T ]← PSc[T ] + (Sc[S]− PSc[T ]) ∗W (G,S, T )

with

PSc[T ]← Sc[S] ∗ PSc[T ] +W (G,S, T ) ∗ (Sc[S]− PSc[T ])

Sc[S] +W (G,S, T ) ∗ (Sc[S]− PSc[T ])

and replacing

NSc[T ]← NSc[T ] + (Sc[S]−NSc[T ]) ∗W (G,S, T )

with

NSc[T ]← Sc[S] ∗ NSc[T ]−W (G,S, T ) ∗ (Sc[S]−NSc[T ])

Sc[S]−W (G,S, T ) ∗ (Sc[S]−NSc[T ])
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7 Time Complexity and Related Optimization

Let N̂(G) be the set of nodes X in graph G such that there exists a path from A to X along positively
weighted edges. Let Ê(G) be the set of edges in graph G with their sources in N̂(G). Let E = |Ê(G)|
and let N = |N̂(G)|.

7.1 Discussion of Time Complexity

The big-O computational time complexity of computing F (G,A,B) is at most Elog(N). This is
because, for all X ∈ N̂(G) the values X and Sc[X] can be maintained in a max heap of size at most
N .
These values can be queried and modified in at most O(log(N)) time, because they are members of a
heap containing at most N elements. Since each node in G appears in L exactly once, all operations
in the iteration over S are executed N times.
Letting a be the length of L, each computation of L is O(alog(N)). In total, the time complexity of
these operations sums to O(Nlog(N)) because each node in G appears exactly once in L. Since each
node is either the source or target of an edge, we know that 2E > N . So, our operation is at most
O(Elog(N)).
Notice that the operation in the iteration over T only mutates Sc[T ] when W (G,S, T ) ̸= 0 (i.e.
there exists a directed edge from S to T ). Therefore, we can instead iterate over edges E0 such that
S(E0) = S. This approach results in our inner operation being executed exactly E times. Since the
mutation of Sc[T ] is an O(log(N)) operation in this construct, we have bounded our total number of
operations from above by a number on the order of Elog(N).

7.2 Potential Optimization Leveraging Sparseness

Since each node represents a peer in a decentralized network, we expect our graph G to be sparse.
To take advantage of the sparse nature of G, we can choose some constant k such that our algorithm
iterates over at most k values of T for each value of S. This can also be implemented as a part of the
trust policy.
Implementation of this limit further reduces the number of times that Sc[T ] is mutated to k ∗N , thus
reducing overall time complexity to a maximum of O(Nlog(N)). However, this does come at some
cost to the quality of results since we potentially ignore edges from any node A where |{E0 : S(E0) =
A}| > k. The value of k determines where a modified version of the proposed algorithm lies with
respect to quality and execution time. Such an optimization would effectively be an ”n most-trusted
(or least-trusted) entities” list for every peer in a network.

8 Output Interpretation

In some cases (especially when a trust policy requires that edges have a low weight), our algorithm
outputs values that are near zero, but still positive. In these situations, it may be helpful to map
reputation scores to outputs on a more useful scale. (E.g. 0.000167 7→ 0.1 and 0.00545 7→ 0.2)

This can be done using a variety of strictly increasing bijective functions from the interval [0, 1] to
itself. Some examples of such functions are

• xn for constant n such that 0 < n < 1

• log(1 + nx)/log(1 + x) for constant n > 1

11



9 Conclusions and Implications

We have proposed a family of algorithms to compute reputation scores in an unmediated peer-to-peer
environment while ensuring the integrity of the underlying signals created by each peer in the network.
This can provide a basis for fully subjective digital experiences such as decentralized professional
networks, review platforms, and file-sharing systems based on relative reputation. Given the sybil-
resistant nature of these algorithms, such platforms can be created without imposing a cost to joining
(a common stipulation of many P2P trust algorithms). Furthermore, our mechanism ensures that
any non-malicious user allocates reputation in accordance with its own beliefs. This removal of selfish
incentives makes our scheme easy to upgrade, as it ensures that the same set of signals (the weighted
edges in our graph construct) can be used as the sole input to future algorithms.
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